The Practice of IT Performance, Load, and Stress Engineering
October 24, 2004


by Wilson Mar, MS -- loadtesters@gmail.com  310.320-7878

The Practice of IT 
Performance Load and Stress Engineering 

A Thesis

Presented 

to the Faculty of

Regis University

School for Professional Studies

in Partial Fulfillment
of the Requirements for the Degree

MASTER OF SCIENCE

IN

COMPUTER INFORMATION TECHNOLOGY

(MSCIT)
by

Wilson Mar

Spring, 2005
DRAFT 0.4

APPROVAL PAGE
COPYRIGHTS
Attention is drawn to the fact that the copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognize that its copyright rests with its author and no quotation from the thesis and no information derived from it may be published without the prior written consent of the author.
DISCLAIMERS

The opinions expressed in this work are entirely those of the author and do not represent in any way viewpoints of his employers and clients nor Regis University.

ACKNOWLEDGEMENTS

Thanks to Trisha Litz, whose quick approval of my proposal was as inspiring as her perfect choice of an advisor.

Thanks to Virginia Madison, my advisor. Her experience with managing performance quality assurance and dedication to quality makes her a perfect advisor to me.
Thanks to my beautiful wife, whose loving hands kept me working and loving words kept me focused. 
Thanks to other performance engineering professionals such as ​​​​​______, whose generosity of time and insight gave me the feedback needed to make this document worthy of readership.
ABSTRACT (TOPIC)
This master’s thesis uses action research methodology to define the approach and artifacts to conduct statically valid tests as part of performance engineering for software development and data center organizations at various levels of organizational maturity.

TABLE OF CONTENTS


PAGE
iAPPROVAL PAGE


iiCOPYRIGHTS


iiDISCLAIMERS


iiACKNOWLEDGEMENTS


iiiABSTRACT (TOPIC)


viiiLIST OF TABLES


viiiLIST OF FIGURES/ILLUSTRATIONS


8CHAPTER I.  INTRODUCTION


8Background


8The New Need for Performance Engineering


8Questions Performance Engineers Answer


9The Business Case for Performance Engineering


9The Need


9Why Not?  The benefits of not having it


10Implementation


10The Performance Engineering Use Case – Roles and Artifacts


11Organizational Challenges for Performance Engineering


11Many Skills Required of Performance Engineers


12Many Organizational Interfaces


14Many Possible Organizational Placements


14Organizational Inputs to PE


15Organizational Outputs from PE


15Frustrations Voiced by Performance Engineers


15Problem Statement


16Purpose and Justification of Study


16Research Approaches


16Organizational Research Questions


17Organizational Artifacts for Performance Engineers


18Limitations of Study


20CHAPTER II.  LITERATURE REVIEW


20Literature on Comparative Statistics


20Literature on Computer Software Performance Engineering and Capacity Management


20Literature on Survey Research


20Literature on Organizational Maturity and Organizational Performance Improvement


20Literature on Action Research


21CHAPTER III.  PERFORMANCE ENGINEERING METHODOLOGY


21Research Questions


21The Target Application Configuration


22Performance Test Plan


23Aspects of Performance Objectives


23Transactions vs. Pages vs. Requests vs. Hits


24Forms of Performance Testing


251. Speed Testing


262. Contention Testing


263. Overload Testing


264. Longevity Testing -- also called Sustainability testing


275. Scalability Testing


276. Fail-Over Testing


27Application Sizing Model


28Research Design


28Performance Test Plan Documents


281. Speed Testing


282. Contention Testing


283. Stress Testing


284. Longevity Testing


285. Scalability Testing


28Timing of Performance Testing


29Application Functions and Dependencies


29Choices For Higher Performance


30Performance Risk Analysis


31Isolated Environment for Performance Testing


31User Logout


32Realistic Data for Performance Testing


32Test Data Generation Tools


32Test Scenarios


32Run Length


33Run Repetitions


33Software Performance Improvement Strategies


33Variables Measured


33The Technology Stack


34Service Level Agreements


34Black vs. White Box Approaches to Testing


35Weblog Metrics


35Load Testing Metrics


35Latency = Response Time


35Throughput


36Concentration Factor


36Miscommunication


36Relationships Among Load Testing Metrics


38Measurement Instruments


38Tools for Performance Engineering


38Load Benchmarks


38Load Simulators/Generators


38Load Monitors


38Code Profilers


38Overhead from Tools


39Limited Data Analysis by Tools


39When There is No Money For Tools


39Sampling Design and Procedures


39Frequency of Sampling


39Think Time


40Data Collection Procedures


40Run Identification


40Environment


41Range of Statistical Error from Multiple Runs


41Run Parameters


41User Types


41Pilot Study


41Data Analysis


42Longevity/Sustainability


42Data Analysis Spreadsheet containing Graphs


43Performance vs. Response Time Relationship Graphs


43Longevity/Sustainability Test Results


44Why TPS Increases


44Significance of the Study


44Performance Test Reports


44Limitations of the Method


45CHAPTER IV.  ASSESSMENT METHODOLOGY


45Description of the Analytic Techniques


45Perception and Assessment Instruments


45Characteristics of the Sample Population


45Research Questions Answered


45Role Ambiguity and Confidentiality


46Managing Expectations


46Put Money Toward More Hardware Instead of Performance Testing


46You’re “Spinning Your Wheels”


47Selection of Tools


47Approach to Testing


47Multiple Simultaneous Contending Projects


47Initial Planning


47Status Reports


47Presentation of Results


48CHAPTER V.  DISCUSSION AND RECOMMENDATIONS


48Organizational Maturity


48Disclosure Policies and Procedures


48Considerations for Selection of Tools


48Approach to Testing


48Juggling: Prioritizing Projects


48Initial Planning


48Status Reports


48Presentation of Results


48Project Review and Conclusion


49REFERENCES


49Comparative Statistics


49Action Research


49Survey Research


49Computer Software Performance Engineering and Capacity Management


49Vendor Specific


51Functional Software Testing


51Organizational Maturity and Organizational Performance Improvement


52APPENDICES


52Appendix A: Job Description - Performance Engineer


53Appendix B: LoadRunner


54Appendix C: LoadRunner Vu Scripting


55Appendix D: Sample Performance Test Plan 1


56Appendix E: Sample Performance Test Report 1


57INDEX


58RESUME


58RESUME




LIST OF TABLES

5Table 1 - Knowledge Domains for Performance Engineering


Error! Bookmark not defined.Table 2 - Roles and Responsibilities in Performance Engineering


11Table 3 - Artifacts addressing Performance Engineering issues and questions


Error! Bookmark not defined.Table 4 - Types of Performance Testing


24Table 5 - Technology Stack


28Table 6 - Run file identifiers




LIST OF FIGURES/ILLUSTRATIONS
30Figure 1 - Flow of data within the Data Analysis Spreadsheet


3Figure 2 - Communication Flow




CHAPTER I.  INTRODUCTION

Background 

The New Need for Performance Engineering

Computers and the internet have enabled organizations to derive a large amount of revenues from public contact online over the internet.
This proliferation makes it imperative for organizations to have a way to  ensure that its portfolio of software applications perform well, even under peak loads such as after an ad runs during Superbowl (the single most watched television program each year) or on Thanksgiving Day (the single busiest shopping day of the year).
These needs have created a new profession of “Performance Engineer XE " performance enginner" ” (referred to as PE in the remainder of this paper). The PE’s contribution is analogous to the wind tunnel testers and Test Pilot in airplane manufacturing companies.  Such individuals conduct dynamic tests using Performance Engineering tools.  Such tools are created by the PEs themselves or by enterprising software manufacturers.
The mission of performance engineering is to identify and measure the extent of problems before they appear to cause an adverse impact to the organization’s customers.
Questions Performance Engineers Answer


Performance Engineers answer real-world research questions such as:

· What is the proper mix of machines in the n-tiered application being deployed?  

· How many and what size machines are needed to purchase and deploy to support an application?

· How many users can this application support?

· What is the payback in terms of better user response time or load capacity when additional machines are added to the configuration?

· How much of an impact will upgrading to a newer version of technology have on user response times and capacity to handle workload?

This thesis examines the environment and methodologies performance engineers can adopt to answer such questions.
This paper focuses on the actions of the Performance Engineer as the central actor in the practice of Performance Engineering, which is a cooperative effort described by several roles.
The Business Case for Performance Engineering

Properly equipping a Performance Engineering laboratory involves a considerable amount of money for equipment, software, facilities, and talent.  Executives making a decision for a performance engineering function require a justification.
There are four sides to business justifications, listed in the usual order of presentation:
· The benefits of not having it, such as the risks from implementing changes.  This is the “devil’s advocate” portion.  

· The tangible (cost savings) and intangible benefits expected from having it

· The hard and soft costs of getting it (the expected amount of time it would take to implement, the cost of conversion, the amount of training that would be required for both the IT staffers and end users, the cost of maintaining it).

· The hard and soft costs of not having it, such as the potential costs of exposure to various risks.

Each of these sides needs to consist of the financial and non-tangible impact of the technology over its life-cycle (over perhaps a five-year period) in terms of the total cost of the system, the expected payback period.

The Need

· Increased customer satisfaction

· Increased business function availability

· Reduced risk of losing valuable customers

· Reduced risk of business transaction loss
Why Not?  The benefits of not having it


The default approach to managing performance is to wait for someone to notice a problem.  Then additional machines are added to the configuration.  This reactive (“just in time fix”) approach may seem less costly than more proactive approaches.

However, the effect of changes to hardware cannot always be predicted.  For example, adding an additional server may actually result in slower performance and reduce the capacity of a system.  Huckaby (2001)  puts it this way:
Trying to overcome a processor bottleneck by throwing hardware (e.g., more memory, faster disks, more network connections) at the problem won't help. In fact, in most cases, doing so often makes matters worse.

Implementation
The implementation plan should summarize the number of people (percentage of the organization) that would be involved in implementation and include risk mitigation, cost control, and fall-back strategies, including weighing the difference between building vs. buying vs. leasing or outsourcing.

Clearly identify the metrics used as the basis for the decision. This will also be used as the basis for judging the success of the implementation.

The Performance Engineering Use Case – Roles and Artifacts

The inputs and outputs listed in the above sections are illustrated by the following use case for the Performance Engineering function.

[image: image1.png]14. Tuning
Techniques

6. Test Scripts &
Run Parameters

1. App. & Data
Configurations

8
Simulated
Load
Patterns 2. Actual Load
9. Predicted
Performance Profile
3. Costs

11,
4. Market Predicted
Usage Patiem Upgrade

Estimates Points.

12. Actual Usage Patterns:





Figure 1 – Performance Engineering Use Case


The Performance Engineer aims to mimic production conditions in the Application and Data Configurations of software and hardware under test.

The Performance Test Plan is created to ensure that participants understand each other’s roles, the objectives of the work, and the timelines for its completion.

The Performance Engineer creates Test Scripts and defines Run Parameters to setup performance tests.  He then analyzes Performance Test Results along several dimensions.  This enables her to identify Simulated Load Patterns which are likely sustainable in the live production environment.

Performance tests provide to developers feedback on the effectiveness of various tuning techniques to improve performance.

The Performance Engineer creates a spreadsheet model to predict the Performance Profile and Upgrade Points for the application under test. Ideally, these predictions are based on Market Usage Pattern Estimates and are associated with some financial cost. 

After the subject of performance tests are deployed into production, Actual Load patterns are compared with predicted patterns.  

When Performance Engineers participate in the definition and analysis of Off-Estimate Alerts from production systems, they can better prevent anomalies in production environments.

Organizational Challenges for Performance Engineering

This paper focuses on the actions of the Performance Engineer as the central actor in the practice of Performance Engineering, which is a cooperative effort described by several roles:
Many Skills Required of Performance Engineers


To be effective, Performance Engineers need to understand the intricacies of literally every piece of software and hardware, plus have political skills to get work done without authority. 
For example, when working with Java Virtual Machines XE " Java Virtual Machines" , the performance engineer is asked to specify the optimum settings. These settings work in conjunction with the number of file handles specified at the operating system.  Typically, machines used in production contain multiple processors.  But several default operating system configuration settings are set by default for just single-processor machines.
This wide amount of knowledge and skill makes performance engineering a good choice for (and indeed require) someone with many years of experience in various roles and responsibilities.

In order to have an integrated understanding of all that affects the net performance of an application, performance engineers (PEs) need to either supplant or obtain the cooperation of several other professionals which have the specialized knowledge and skills:

	Profession
	Knowledge (Explain) and Skills (Perform)

	Server Administrator
	· Impact of operating system parameters, such as the maximum number of file handles
· Impact of LDAP authentication and DNS lookups

· Impact of NAS/NFS/SAN filer parameters



	Software Developer
	· The trade-offs to programming techniques which may impact performance

· The threshold when specific programming techniques should be employed.



	Database Administrator 
	· Impact of database tuning parameters

· Impact of data structures (indexes)



	Statistician
	· Theory of Variation

· Calculation and explanation of Averages, Medians, Standard Deviation, and other measurement techniques

· Taguchi Design of Experiments



	Financial Analyst
	· Cost/Benefit Analysis

· Financial Projections which consider the Time Value of Money and Payback Period



	Project Manager
	· Risk Analysis and Management (being able to think proactively and defensively)

· Critical Path Scheduling




Table 1 - Knowledge and Skills Required of Performance Engineers

Many Organizational Interfaces

The analytical (statistical) nature of Performance Engineering work makes it ideal for someone who both enjoys working with numbers and also able to work well with people in several other disciplines.  Performance testing involves much more interaction with people than functional testing.  

“If you want to sit at your desk, you’re better off in functional testing” (online ???)


Here are the disciplines involved in performance engineering:

	Person/Role 
	Responsibilities 

	A.1. Project Manager
	· Recruits and assembles team members, equipment, and other resources. 
· Drafts and publishes plans and reports. 
· Reports and explains progress to executives.

	A.2. Developer Liaison 
	· Provides expertise on the use of performance-impacting techniques and tools used by developers. 

	A.3. Web Server Performance Basis Expert
	· Analyzes and tunes the components and configurations of web (IIS) and application servers.

	A.4. Database Performance Basis Expert
	· Analyzes and tunes the database server for SQL calls from other servers.

	A.5. Database Administrator 
	· Provides "show plan" and usage statistics before and after changes. 
· Load and Reload data into test databases used during test runs 

	A.6. Functional Tester 
	· Alert if transaction times are significantly less or more than anticipated. 

	B. Performance Engineer (LoadRunner Expert)
	· Evaluates application performance risks
· Determines test approaches and run environments.
· Creates multi-user load scripts, conducts runs, generates analysis 

· Identifies areas of concern from run results.
· Reports on the status of performance. 

	C. Project Financial Sponsor
	· Provides the source of funds/budget. 
· Provides approvals to expend resources. 

· Audits project completion. 

	D. Functional (Marketing) Application Owner 
	· Provides expertise on the process employed by real users -- the business requirements of actual users. 
· Predicts the probable usage patterns within the application. 

	E. Production Operations 
	· Designs and installs monitoring in the production environment. 
· Publishes production usage and load statistics. 

· Issues alerts when monitors identify alert trigger points. 


Table 2 - Roles and Responsibilities in Performance Engineering

Many Possible Organizational Placements
Unlike more established organizational functions, the performance engineering function can be placed at different parts within various corporate hierarchies.  Here are the rationales for the most common alternatives:

· “The performance engineering function is a peer of (separate from) the Functional Quality Assurance organization because the aims, tools, and processes for performance engineering is fundamentally different than functional testing.”
· “The performance engineering function is under the Functional Quality Assurance organization to better integrate work on specific products. This allows for unified quality assurance planning.”  For example, the RUP (Rational Unified Process), the most widely used system development methodology today, describes Performance Engineering in a footnote as a subset of functional testing (???, ???).
· “The performance engineering function is under the jurisdiction of development managers because it’s part of the development process. This fosters better ownership of quality by developers.”
· “The performance engineering function is a part of data center operations organization because it’s in their best interest. The process of getting applications running in the performance lab is one step toward ensuring quality production installation documents and processes by the same organization responsible for production effectiveness.”
Organizational Inputs to PE

Performance engineers, wherever they are placed within the corporate hierarchy, need to interact with a large number of other organizations to obtain resources:

· Executives for standards the application is expected to fulfill, such as maximum acceptable response times and expected loads per server (which impact the profitability of operating the application).

· Developers for explanations of their application.

· Functional Testers for suggestions on the performance risks of application actions and specific test cases, especially negative test cases where the application may require excessive time to resolve.

· Database administrators for data needed for load testing, such as copies of data from development and production databases.  

· Production deployment for assistance and documentation on how to install and configure machines and applications the same way as in the production environment.

· Configuration management for “official” copies of assets to be installed.  This provides a way to ensure that assets being tested is the same as what is installed in target production machines.

· Data center NOC (Network Operations Center) for production utilization statistics and alerts.

Organizational Outputs from PE

Performance engineers, wherever they are placed within the corporate hierarchy, serve a large number of other organizations:

· To Executives – validation of how realistic are application standards and requirements desired.

· To Developers -- application tuning tools and techniques.

· To Functional Testers – automated assurance that application actions under performance test are operational.

· To Database administrators – assessment of the impact of data structure designs under various load patterns.

· To Production deployment – early identification of issues with the process and documentation for installing and configuring machines and applications in the production environment.

· To Configuration management – assurance that “official” copies of assets are installable and operational.

· To Data center NOC (Network Operations Center) -- basis for levels at which alerts should be issued. 

Frustrations Voiced by Performance Engineers

·  “We’re not told about projects”

· “We’re not given adequate requirements”

· “We’re not given enough time”

· “We’re not sought out for advice”

· “Our warnings are ignored”
Note that these are passive.  This thesis aims to identify specific proactive actions that performance engineers can take to fulfill a mission of preventing problems for the organization and its technologies.

Problem Statement

The practice of performance engineering has received scant academic interest.  Articles, books, and conference papers that have been published focus almost exclusively on the technical aspects of performance engineering. I have not found a single thesis or book that analyzes the organizational challenges of how to being a highly effective performance engineer.  
This paper aims to fill that gap because the job of a Performance Engineer is not simple.
Purpose and Justification of Study

It is the hope of the author that this thesis will provide a starting point for the definition of industry-standard best practices for the profession of performance engineering.

This paper aims to be of practical use to practitioners in the fledging field of Software Performance Engineering by offering these “delverables”:

A. Examples for performance engineers to develop their own set of artifacts specific to fulfilling their job – answering the questions performance engineers answer.
B. A set of organizational artifacts and processes that address the frustrations commonly voiced by many Performance Engineers:

C. A framework for evaluating and improving upon those artifacts.

Research Approaches
This thesis uses a different methodology to address each objective.

A. A traditional quantitative investigational methodology to make conclusions about the performance characteristics of sample applications.

B. “Action research” methodology to address the organizational aspects.  This qualitative approach relies less on statistical methods and use instead personal wisdom, experience, and collaborative effort to make sense of data. This data can be collected through field notes, audio tape recording, diaries, interviews and discussion, video tape recording, questionnaires, sociometry, documentary evidence, slide/tape photography, and case-studies (McNiff, 1988).
C. Opinion survey that is easy for commentators to use and can be quickly tabulated.
Organizational Research Questions

This paper aims to answer the questions that must be answered within each organization making use of a Performance Engineer.  For example:

A. How can Performance Test Project Plans and Status Reports be structured so that they can be useful in properly managing the test project? 

B. What organizational policies are necessary or counterproductive?

C. Where does the Performance Engineering function fit within an Organizational chart, workflows, and formal/informal communication flows of an organization?

D. What is the ideal set of tools needed and how to best choose among competing and complimentary tool offerings?

E. How should hardware and software technologies be organized and configured to make performance engineering possible and easy?

F. How can the work day of a Performance Engineer be structured for maximum productivity?

G. How should the Performance Engineer best communicate with others?

H. How can the Performance Engineer best evaluate his/her effectiveness?

Organizational Artifacts for Performance Engineers


This paper examines the potential application of artifacts and processes which have been used by others to proactively address the organizational concerns of the performance engineer and the stakeholders within the performance engineer’s employing organization:

	Question/Concern
	Artifact and Discussion

	A. Who are the stakeholders to Performance Engineering and what do they need and want?
	1) Job Descriptions of Stakeholders
2) Organizational Placement
3) Preferred Methods of Communication 

4) Depth and Styles of Presentation

5) Model of Requirements

6) Stakeholder Evaluations



	B. How can Performance Engineers “manage” the expectations of his/her stakeholders?
	7) Role Ambiguity Clarification

8) Delegation of Authority

9) SWAT Analysis

10) Pre-Project Planning 

11) Risk Analysis and Management

12) Critical Path Scheduling

13) Data collection and organization

14) Status Reports

15) Post-Project Reflections on Processes

16) Staffing strategies 

17) Cost/Benefit Analysis

18) Testimonials

19) Project Portfolio Summaries



	C. What tools should be used for Performance Engineering?
	20) Survey of available tools

21) Spreadsheet, Graphing, and Data Analysis Software

22) Tradeoffs and Considerations 

23) Tool Evaluation criteria

24) Tool Evaluation conclusions

25) Purchasing Process Nuances 

26) Tool Training and Certification




Table 3 - Artifacts addressing stakeholder questions and concerns

Each of the artifacts above can be the subject of a separate dissertation!

Limitations of Study

This thesis is anecdotal in nature and does not define the industry-standard best practices collaboratively derived from the wisdom of many performance engineers.  Such an endeavor is planned for the author’s Ph.D. dissertation, which will involve identifying, interviewing, and surveying a large number of performance engineers working on internet sites.


This thesis only reflects on the consequences of an approach particular to a specific organization at a specific locale during a single point in time.  Additional research is necessary to analyze people working in organizations at different levels of organizational maturity.  To address this need, the author hopes to develop and publicize, in an effort separate from this project, a website that provides the tools and platform for software performance engineers to share their experience and discuss issues in depth.  This will allow performance engineers a forum to easily compare and contrast each other’s artifacts and opinions.  This also will make it easier to conduct statistically valid surveys of professionals in this field.
CHAPTER II.  LITERATURE REVIEW

One of the motivations for this study is that not much academic interest in this relatively new and unknown profession.
Literature on Comparative Statistics

Key words:
Literature on Computer Software Performance Engineering and Capacity Management 

Microsoft’s “Improving .NET Application Performance and Scalability” article (April 2004) by J.D. Meier, Srinath Vasireddy, Ashish Babbar, and Alex Mackman < http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenet.asp >
[image: image2.png]Performance Objectves.
(Resons Tre, Trugnpu, Resore Uiz, Worss)
performance odeling
(Scnarn, Copctin, Vst Reseamants Bt Hers)
‘Architocturo and Design Guldelines.
Proco. Pracces v Patne)

rntects, Do Toors Admnrsers)

i
Porormance and Scaisbilty Frame H
caprgmaCowan  Remce ot
s ey e
ey for e
easuring, Tosing, Tuning
gy e o
from S S

e Steeny  Spen
Renrcs Ucatn  Capay Teang Pt
o Fopweton





Figure 2 – Microsoft’s guidance on Engineering for Performance

Microsoft’s guidance is organized by categories, principles, roles, and stages of the life cycle: 

· Performance objectives enable you to know when your application meets your performance goals. 

· Performance modeling provides a structured and repeatable approach to meeting your performance objectives. 

· Architecture and design guidelines enable you to engineer for performance from an early stage. 

· A performance and scalability frame enables you to organize and prioritize performance issues. 

· Measuring lets you see whether your application is trending toward or away from the performance objectives. 

Key words:

Literature on Survey Research

Key words:
Literature on Organizational Maturity and Organizational Performance Improvement 
Literature on Action Research

The methodology of this thesis is termed “action research” because it relies less on statistical methods and use instead personal wisdom, experience, and collaborative effort to make sense of data. This data can be collected through field notes, audio tape recording, diaries, interviews and discussion, video tape recording, questionnaires, sociometry, documentary evidence, slide/tape photography and case-studies (McNiff, 1988).
CHAPTER III.  PERFORMANCE ENGINEERING METHODOLOGY
This chapter 

     A.   Research Questions: The student should present the initial questions and

          objectives that will focus the study.  A constructivist study must focus on a

          specific phenomenon (e.g., rules for classroom interaction) that emanates

          from the inadequacies of current theory and research.  The precise nature

          of the questions to be researched evolves in the process of collecting and

          analyzing data.  The initial questions may be vague, but the statement of

          the questions are important, because they frame the procedures for

          collecting and analyzing data.  The questions should follow from the

          theoretical and research background, and should guide the design of the

          study.

     B.   Research Design: Many different design options are available to a student

          who works in the emergent, qualitative tradition.  The student should

          describe the design that will be used, such as ethnography or

          phenomenology.  This will communicate with the reader whether the

          emphasis will be on cultural issues or individual, subjective experiences. 

          The student should present a rationale for the design of choice in terms of

          the research problems identified.

Research Questions
The Target Application Configuration
It is important to note the dates and version identifiers of the application under examination and the support tools/libraries it uses, such as databases and API’s.  For example: ??? 
Performance Test Plan

Performance Engineers measure several aspects of performance.  The most visible measures are:

Executive Summary 

1.
Introduction

1.1
Purpose

1.2
Scope

1.3
Audience

1.4
Responsibilities

1.5
Section Overview

2.
Test Strategy

2.1
Overview

2.2
High Level Strategy

2.3
Requirements/Goals Verification

2.4
Approach

2.5
Assumptions and Issues

2.6
Performance Validation Entrance Criteria

2.7
Performance Validation Test Types Within Scope

2.8
Response Timers

2.9
Stability Testing

2.10
Exit Criteria

2.11
Defect Report (DR) Severity Definition

2.12
Tools

2.13
Performance Validation Results Evaluation

3.
Test Design

3.1
Scenarios

3.2
Actors

3.3
Use Cases

3.4
Scenarios

3.11
Workload Definitions

3.12
Workload Distributions

3.4
Defect Categorization ???

4.
Resources

4.1
Roles

4.2
Environments

4.2.1
Production Environment

4.2.2
Performance Testing Environment

4.3
Data

5.
Artifacts

5.1
Test Logs

5.2
Defect Reports

5.3
Test Cases
5.4
Automated Test Scripts

6.
Risks

7.
Project Plan

Aspects of Performance Objectives

Performance Engineers measure several aspects of performance.  The most visible measures are:

· Startup time (for a machine to boot up and for applications to begin accepting work).
· User Perceived Performance (response time to answer user requests)

Performance engineering also watch measures of internal processing efficiency:

· Swapping of pages between disk and memory (also called the amount of “Thrashing”)
· RAM footprint

· Scalability

· Hard disk space required (for logging and storage of data)

Transactions vs. Pages vs. Requests vs. Hits

Transactions are typically initiated by a user using an internet browser to invoke a URL address.  

A transaction can consist of several HTTP requests.  For example, a web page may have Javascript to make several requests to update different portions of the screen (with each portion in a separate IFRAME).

Although several pages can be returned from a single request (such as when pages are set to automatically refresh), the number of “pages” usually equates to the number of requests.
Each page returned from a request can result in several hits, since each image on a page generates its own hit on the web server.
Metrics are ???
The SPECjAppServer2001 benchmark is based on a metric base named BOPS (business operations per second) ​– the number of customer order transactions plus the number of manufacturing work orders.  This is used as the denominator for the price/performance metric of $/BOPS –dollars per business operations per second.
Forms of Performance Testing

There are several types of Performance Testing (“Technical Testing”), each concerned with a different  aspect of the quality of a software application.  Ivan Maclaine (2003) notes that:

Load and stress testing are two different, but related forms of testing. 
Stress testing involves testing a system under extreme cases, which will rarely occur under normal conditions. Such testing can involve such scenarios as running many users concurrently for short times, short transactions repeated quickly, and extraordinarily long transactions.

Load testing places a more realistic load on the system. Scenarios are modeled on the demand that the system is expected to face under real conditions. Load testing starts by placing a low demand on the system, and gradually increasing the load. This process allows measuring the performance of the system under different loads, as well as determining the maximum load that under which the system can respond acceptably.

This thesis offers these more precise terms defining the 5 different types of load/stress testing:

1) speed, 

2) contention, 

3) overload, 

4) longevity, 

5) scalability, and

6) fail-over
The following list avoids the words “load testing” and “stress testing” because various authors have assigned the same label to the different types of performance tests. 
All of these are ideally performed in this sequence.
	Form (Type) of Performance Testing
	Purpose/Task (Why)

	1. Speed Testing XE " Speed Testing" 

	a. Quantify the best possible start-up, shut-down, and user GUI transaction response (latency) times when the system is servicing only a single user at a time (under no other load) in order to determine whether they are acceptable. 
b. Verify production installation configuration instructions and settings.

c. Make sure CPU, disk access, data transfer speeds, and database access optimizations are adequate.


	
	

	2. Contention Testing XE " Contention Testing" 

	d. Find performance bottlenecks (such as lock-outs, memory leaks, and thrashing) caused by a small number of Vusers contending for the same resources.
e. Make sure that data and processing of multiple users are appropriately segregated. 

f. Identify the largest burst (spike) of transactions and requests that the application can handle without failing. Such loads are more like the arrival rate to web servers than constant loads.


	3. Overload Testing XE " Overload Testing" 

	g. Determine how well the number of users anticipated can be supported by the hardware budgeted for the application.
h. Quantify the degradation in response time and resource consumption at various levels of simultaneous users.  This is done by gradually ramping-up the number of Vusers until the system "chokes" at a breakpoint (when the number of connections flatten out, response time degrades or times out, and errors appear). 
i. Find the Job flow balance achieved when application servers can complete transactions at the same rate new requests arrive. 

j. Make sure there is enough transient memory space and memory management techniques.

k. Make sure that admission control techniques limiting incoming work perform as intended. This includes detection of and response to Denial of Service (DoA) attacks XE "Denial of Service Attacks" .



	4. Longevity Testing XE " Longevity Testing"  -- also called Sustainability testing XE "Sustainability Testing" 

	l. Make sure that the system can sustain over at least a 24 hour period a consistent number of concurrent Vusers executing transactions using near peak capacity.
m. Measure the pattern of build-up in cruft XE "Cruft"  (logs, data structures, and statistics that need to be periodically pruned).

n. Detect the impact of occasional events (such as Java Full GC and log truncations) and anomalies that occur infrequently.

o. Make sure there is enough disk space and provisions for managing space, such as log truncation XE "Log Truncation"  jobs that only occur automatically in the middle of the night.


	5. Scalability Testing
	p. Repeat tests on different server/network hardware configurations to determine the most cost-effective option to support targeted load levels (one aspect of Capacity Planning).
Note:

· “Vertical scaling XE "Vertical scaling" ” “up”  XE "Scaling up"  adds additional RAM or CPUs within individual server boxes. 

· “Horizontal scaling  XE "Horizontal scaling" ” “out”  XE "Scaling out"  adds additional server boxes to a cluster of identical servers.



	6. Fail-Over Testing XE " Fail-Over Testing"  
	q. Ensures that when one computer of a cluster fails or is taken offline, other machines in the cluster are able to quickly and reliably take over the work being performed by the downed machine. 


Table 4 - Forms of Performance Testing

The term “reliability testing XE "Reliability Testing" ” is avoided here because the term can be interpreted to mean either fail-over testing or longevity testing.

Application Sizing Model

The most useful deliverable from performance engineering efforts is a spreadsheet that calculates the application set’s projected resource demands.  Examples of such requirements include:

· CPU utilization

· Hard drive space (for application data and run logs)

· Telecommunications data bandwidth

These projections may also be extended to analyze the impact of performance to Product Costs from financial analysts in the organization and be based upon inclusion of Market (User) Usage Patterns from marketing analysts in the organization.

Research Design

The aspects of a Performance Test Strategy:

Performance Test Plan Documents
This section presents a Performance Test Plan for each type of performance testing. Each of the plans have a common set of sections:

· Application architectural Components (and how they interact with each other, how to place stress on specific components).

· Application segments and their usage patterns (the different user groups or ways users make use of the application).  This is used to determine the patterns generating periods of peak demand.

· Application Installation (application databases, application components, and systems configuration settings).

· Application operation (such as how to reset databases to the starting set of values).
1. Speed Testing

2. Contention Testing

3. Stress Testing

4. Longevity Testing

5. Scalability Testing

Timing of Performance Testing

When an organization initially adopts performance engineering, it typically aims to apply performance testing toward the end of the development cycle, immediately before the application is deployed into production use.  Load and stress testing typically occurs as part of User Acceptance Testing. Such testing typically take an “End to end” approach from the end user’s functional perspective rather than the internal system technical viewpoint. 
More mature organizations aim to integrate performance testing in parallel with development activities.  This has several advantages:

· Developers can fix problems earlier, when changes are less expensive, since changes later in the development cycle would require re-integration and regression testing.
· Developers and database administrators can try more variations if they can assess the impact of various architectural decisions.
· Performance engineers have a better chance at better understanding the internal idiosyncrasies of the application under test.

· Deployment processes and documents can be refined over time.

Application Functions and Dependencies

This provides a cross-reference between the technical component names used by developers, the name used to store test automation scripts, and the screen text familiar to users.  Additionally, the completion status of each item can be noted (as “not ready” or “v0.3 OK”, etc.).
Choices For Higher Performance
A number of authors have suggested strategies.  The following are examples of common assumptions about the performance of architectural choices. 
· SQL stored procedures run faster than dynamic SQL queries
· Using a compiled language such as C++ is faster than an interpretive language such as ASP.

· CGI is slower than ISAPI 

· Multi-threaded applications are faster than single-threaded apps.

· The more CPUs on a Multi-CPU machine, the faster it runs.

· Sending compressed files to internet browser clients supporting HTTP 1.1 compression improves total performance.
· SCSI drives are faster than IDE drives.

· NAS filers are faster than RAID devices.

· Fibre networking media is faster than networks using copper cables.

· Direct database queries execute faster than using database cursors.

· Specifying input/output caching is faster than reading from disk every time.

· Connection and object pooling enables faster latency and throughput

· Connection keep-alive enables faster latency and throughput

· Fixed connection pools sizes are more efficient than allowing their size to vary.

· New versions of software are faster than older versions.

The question is whether the extent of difference warrants their higher cost.

Moreover, combinations of these techniques may yield different results than assumed. 
Performance Risk Analysis

Because the time testing engineers never get all the time they want, risk assessment presents a methodology to rank the risk of each function so that testing work can focus be prioritized toward the highest yield for the effort.

To a list of functions of the application, each function is rated for its:

a) Importance to the system’s objectives

b) Frequency of use

c) Demand it places on the system

d) Likelihood of failure

Each type of risk can be weighted to generate a risk score for each application function.  An example of the spreadsheet, using a scale of 1 for low to 5 for high:
	Application Function
	a) 
Importance to system
	b) 

Frequency of Use
	c) 
Demand on system
	d) 
Likelihood of Failure
	Sum

	1) Login
	5
	5
	2
	2
	

	2) Logout
	1
	1
	1
	1
	

	3) Select Menu Category
	5
	5
	1
	1
	

	4) Category List
	4
	4
	3
	1
	

	5) Category Add
	5
	1
	2
	1
	

	6) Category Edit
	4
	2
	2
	1
	

	7) Category Delete
	3
	1
	2
	4
	

	8) Category Select
	4
	5
	2
	1
	


Table 5 - Sample Functional Application Risk Assignment
Before assigning values, the basis (guidelines) for each rating should be clarified.
For example, all c) items (demand on the system):

- functions performed at the client is a 1


- functions requiring single database query is a 2


- functions requiring complex client XSLT is a 3


- functions requiring multi-row database lookup is a 4


- functions requiring resorts or transfers is a 5

Example notes associated with each cell :


1d – Login requires authentication, which spans several servers.

Some functions (such as login) may necessarily be included in tests because of functional dependencies to them, regardless of their risk rating.
The “Sum” score is the product combining all ratings, perhaps combined with weightings to better differentiate the different columns.  Performance testing would likely favor  (give more weight to) the demand on the system.
If there is not enough time to perform all test cases desired, test items below the “cut off” clearly identifies the risk assumed from not testing.

Without this tool, the tester assumes all risk and will have a much more difficult time explaining why a specific defect was not discovered before deployment.

Isolated Environment for Performance Testing
Ideally, testing is performed in an isolated network.  Having no other work in the environment used for performance testing to avoid having other work possibly taint  the reliability of results.  Using an isolated network also protects other work from suffering during stress testing.

However, speed and contention performance tests are commonly conducted on production servers to obtain actual statistics, which can be compared against predicted numbers.

User Logout


Because keeping connections open requires memory for the connection itself and associated data (such as shopping cart contents), applications can respond quicker if users explicitly sign-out (log out/off) rather than simply abandon their sessions.

For example, the application mix used by the Middleware Company (2003, page 13) in their study of J2EE vs. Microsoft .NET had 50% of users explicitly logging out rather than waiting 10 minutes for the session to time out.

[image: image3.png][N
1811 Janag diy

TTLLIT

Emﬁgmz_ 138UU07)

E:.; w LET

S|a305 d1IH

0L waishs fiunelady

TTTTTTTTTTTT

SuaIaULag Ua))





HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Http\Parameters

• MaxConnections - Increased to the maximum 60000 to enlarge the number of

connections available.
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

• MaxUserPort - Increased to the maximum 65534 to enlarge the number of user ports

available.

• TcpTimedWaitDelay - Decreased to 60 second to reduce the number of ports in TIMED

WAIT state.

• NumTcbTablePartitions - Changed to 16, so with an 8 CPU system we could get more

concurrent Tcb table access.

• TcpMaxSendFree - Changed to 0xFFFF, from 5000, to bump the size of the TCP

Header table.

HKEY_LOCAL_MACHINE\SYSTEM \CurrentControlSet\Services\AFD\Parameters

• EnableDynamicBacklog - Turned on to allow Windows to dynamically shrink or grow

the number of backlogged connections.

• MinimumDynamicBacklog - Set to 20, when the number of free connections on a

listening end point drops below this value additional free connections will be added.

• MaximumDynamicBacklog - Set to 20000, the maximum number of free connections

for a listening end point. Note that in a commercial server this may be reduced to

prevent denial of service attacks that were not a concern on our closed lab environment.

• DynamicBacklogGrowthDelta - Set to 100, i.e. the number of free connections to

create when additional connections are necessary. Note that a large value for this

setting could lead to a too large free connection allocation.

Realistic Data for Performance Testing
Since the responsiveness of an application can be affected by the amount of data in the system, it is usually important to create test databases of a size similar to what will expected during production use.

Determining the extent that database size affects performance is often a part of a separate “scalability” performance test.

A difference in the values within databases can also affect the performance profile of an application.  Therefore, care must be taken to populate each column with the mix of different values that are likely to occur in production.

Test Data Generation Tools
Typically, a script or SQL query is needed to reset databases to a state common to all runs.

SQL queries to identify the mix of values (written by Database administrators) can be useful in fine-tuning the data used to run performance tests.
A common SQL query extracts data used to drive performance testing scripts.

Test Scenarios
Scenarios are sequence of actions. 

Run Length
Different forms of performance testing require different run lengths.

Speed and contention tests usually quickly  (in a matter of minutes) because repetition is not necessary with such tests.
Overload and scalability tests are typically set to gradually build up on the number of simultaneous virtual users over an hour or less.
Longevity tests typically run for at lease 24 hours, such as 78 hours over a weekend.
Run Repetitions
Running the exact same test several times is useful for several reasons.

The main reason is to ensure more statistical reliability.

Multiple runs also allow external influences to become more readily detected.

Software Performance Improvement Strategies

· Streamline the work of dominant workload functions to do only what is necessary. 

· Couple interfaces to objects they use most frequently. 

· Batch requests to execute together instead of individually. 

· Spatially spread the load demand for high-usage objects to different objects or locations. 

· Temporally spread demand to different periods of time. 

· Flex (minimize) the amount of work that must execute at regular intervals. 

· Cyclically minimize work at regular intervals of time. 

Variables Measured 
The Technology Stack
The Performance Engineer (hereafter referred to as “PE”) needs to be involved in all the technologies employed by an application.  So performance improvement and management projects need to be considered in the context of these layers and components of the “Technology Stack”:

	Layer
	Components

	Business  
	· Number and types of users 

· Business hours 

· Batch (cron) jobs 

· Report schedules 

· Process Improvement projects



	Application


	· N-tiered architecture 

· Software architecture 

· Database layout (schemas) 

· Access and security methods 



	Systems Software
	· The impact of accelerator software packages

· Performance Engineering software

· Measuring the overhead imposed by software



	Operating System
	· Kernel tuning 

· OS revisions 

· Disk volume layouts 



	Hardware
	· CPU (number of processes)

· Memory (size of memory)

· Local Disk and NAS/NFS/SAN filers


	Telecommunications
	· NIC cards and line speed

· Routers and Firewalls

· Load Balancers and NAT devices

· Network Backbone (weather)



Table 6 - Technology Stack

Service Level Agreements

M defines performance engineering as the task of setting Service Level Agreements (SLAs) and then assuring delivery of those SLAs. (page 111)
Black vs. White Box Approaches to Testing

To be useful, it is not sufficient to identify the bottleneck among the components of a system:

Client >> Internal network >> Web server >> Application server >> Database Server  >> Web server >> Client

To be actionable, the outcome of performance engineering needs to address root cause, such as:

· memory leak within the application

· JVM garbage collection setting to make use of multiple CPUs. 

· the same transactions requiring more time due to database indexing schema

Weblog Metrics
between production …

For example, statistics based on web site visitor logs typically make use of two measurements:

· “Unique Visitors” count the unique IP addresses of users making requests. 

· “Requests” measure the number of URLs submitted to the web server.
· “Hits” is a count of all the resources (typically graphic files) associated with each URL request.

A request for a complex webpage can generate dozens of hits.

Load Testing Metrics

However, load testing products use a different set of terms:

· “actions” identify each act performed by users, such as clicking an image link with a mouse, clicking on a hypertext link, or pressing Enter to invoke the selected button.  An action can generate several web page requests, depending on the complexity of the Javascript programming at the client and the server-side script involved.
· “transactions” count the 

· “peak” which measure each resource (typically graphic files) requested by a single request.  To determine the peak based on.  

Latency = Response Time XE "Latency" 

 XE "Response Time" 
For web sites, latency is represented by the metric “Time To Last Byte” (TTLB) – the time between when the first byte of a web page request being sent out (abbreviated TTFB) to when the last byte of the complete page content is received.  Total latency is conceptually divided into the application servers generate data and the time that data spends traveling through the network and its firewalls.
Throughput XE "Throughput" 
Throughput refers to the amount of work processed within a certain unit of time.

Transaction throughput is a measure of the number of transactions processed per second (abbreviated TPS) or the number of requests per second (RPS).  From a marketing perspective, the throughput of an application may be measured by the count of visitors per day and page views per day.
The purpose of stress testing is to identify how many requests per second a system can handle before latency peaks and the server rejects requests.

Concentration Factor XE "Concentration Factor" 
A simple way to quickly derive peak request levels is to use a “concentration factor” parameter value to derive the per-second peak transaction rate from a daily average rate, assuming a standard deviation.  In the example of a website accessed throughout the world, the per-second peak is ___ times the average (the daily rate divided by 24 hours.
[image: image4.png]Hourly Summary

Sysanbad 4o Jaguny

Hour




Figure 3 = Hourly Summary of Website Requests for a global site
The smaller the variability, the smaller the standard deviation.

This parameter value can be mathematically calculated from the average and standard deviation.

Miscommunication

· Difference in the ratio of “hits” to the number of “page requests” can skew results.  So tests should be performed using web pages of average complexity expected in production.  Changes to the number of resources on webpages being tested will change the ratio of hits per page request.
· number of simultaneous users.

Relationships Among Load Testing Metrics

Menasce (2004) identified several formulas to define the relationship among the various load testing metics:
Little’s Law XE "Little’s Law" 
Measurement Instruments 
     D.   Measures/Instruments: The researcher is the data collection instrument

          in the collection of much of the data that are collected in constructivist

          research.  Therefore, the researchers must describe themselves in terms of

          closeness to the topic, values, etc.

Tools for Performance Engineering

Several products have been developed to enable developers to predict and debug how application will likely perform under production loads.

Load Benchmarks XE "Benchmarks" 
· Load Benchmarks (such as WinBench and SPC) provide a consistent basis for comparing the performance of specific constellations of hardware and software.

Load Simulators/Generators XE "Load Simulators" 
· Load Simulators (such as Segue, Mercury LoadRunner and Rational LoadTest) simulate multiple simultaneous users making request of the target application.  These tools mimic client programs such as Internet Explorer exchanging HTTP messages, Microsoft Outlook exchanging POP3 and SMTP messages, custom programs exchanging messages through WinSockets, etc.
Load Monitors XE "Monitors" 
· Load Monitors (such as GCPortal) provide visualization of server processes such as Java Garbage Collection.

Code Profilers XE "Profilers" 
· Code Profilers (such as Quest JProbe and Compuware DevPartner) details the dynamic internal state of running applications.

Overhead from Tools XE "Overhead from tools" 

The overhead imposed by monitoring tools can significantly skew test results.


For example, a VeriTest (2002) study was unable to compare current against prior performance and scalability tests of Microsoft .NET Pet Shop (against the Sun Java Pet Store) (run November 2001) because prior tests then used a tool (Quest Benchmark Factory) that generated twice as much network traffic (data throughput) as the Mercury LoadRunner tool.  This caused the site to appear to provide slower response time and handle a smaller overall user load.
Limited Data Analysis by Tools


These application tools generate data.  However, load testing tools currently on the market do not consolidate, compare, and graph results from multiple runs.  

This is why run results must be manually transferred onto Data Analysis Spreadsheets.

When There is No Money For Tools

Because of the limited market for load testing products, many organizations cannot afford them.  The alternative …
Sampling Design and Procedures

     C.   Sample: The student should discuss the criteria for the selection of the

          participants and the setting of the study.  Constructivist studies typically

          occur in naturally-occurring settings and all individuals in the settings are

          considered to be participants.  The student should describe the method that

          will be used to identify those participants who will serve as a sub-sample

          to provide in-depth information.  Research involving human subjects, no

          matter where those subjects are located (on or off campus), must be

          reviewed by the Institutional Review Board (IRB) for Human Subjects at

          Gallaudet.  This is necessary prior to conducting any research.  (Even

          research which will ultimately be ruled "exempt" from IRB approval, must

          be reviewed by the IRB.)  

Frequency of Sampling

Load Generator software. 

If data is collected too frequently, load and increase data.
???

If data is not collected frequently enough, the data may appear to have an oscillating pattern when it is really a manifestation of data being collected at certain points in time.
Load Generation
Think Time

Doculabs (2001) estimates that one user with no think time equates to at least ten real users with a normal user-delay between page requests.  

However, long think times means that users remain in the server’s work queue longer.  This typically results in larger memory consumption.

Data Collection Procedures

     E.   Data Collection Procedures: The student should describe the design for

          the data collection, including a clear description of the procedures that will

          be used.  The researcher's role should be described in terms of the degree

          of participation in which the researcher will engage.  Supplemental

          methods of data collection such as videotapes, audiotapes, diary notes, or

          journal entries should be described.  The time period for data collection

          should be identified.  The student should acknowledge that data collection

          and analysis overlap in a constructivist study and should reflect on

          possible changes in the type of data or the focus, time, or strategies used in

          the study.  The student should address the constructivist parallels to

          reliability and validity in measurement as they are explicated in the

          literature, including credibility, transferability, dependability, and

          confirmability, and the methodological strategies that will be used to

          ensure that high quality data are collected.

Run Identification
For example, this table lists the identifiers used to name run files:
	Environment
	User Type
	Actions
	Test Run Parameters
	Run counter

	Mix of machines 
and 
version of application
	Subgroup 
segregating the
user population
	The 
script
	Number of 
virtual users 
(the application load)
	Repetitive 
run 
identifier

	3IMAPv305
	Light
	S1e
	1vu
	R1

	
	Medium
	
	
	R2

	
	Heavy
	
	
	

	
	Extreme
	
	
	


Table 7 - Run file identifiers
Each of these columns is explained in the sections below.
Environment

The “environment” for a run is the combination of variables under study – a specific combination of all elements in the Technology Stack.  For example, a specific environment for a particular run can consists of:

· The number of each machines (the mix of machines)
· The specific version of each software application and hardware employed
· The specific set of configuration settings used in the run.

Each set of environment variables relates to one of the alternatives under statistical consideration.

Range of Statistical Error from Multiple Runs

When political pollsters such as Gallup report their prediction of elections, they also make a statement about the survey error being “plus or minus 2%”.

Such a statement is necessary when making any statistical inference.  

This error is calculated by comparing the results of several runs under identical conditions. To ensure accurate analysis, results from several runs using the same run parameters within the same run environment are averaged together.  

Each “run” identifier identifies a specific execution of a test.  
A separate tab in the data spreadsheet holds results from different runs, averages them together, calculates the percentage difference against data in another spreadsheet, and calculates the percentage variability (“survey error”) among similar runs.
Some benchmarks, such as by Doculabs (2000), reports results from the best of 3 runs.

Run Parameters

The “run parameter” identifies the load being applied to the run, such as the number of virtual users.
User Types

A “User Type” segregates the load profile being applied to the environment, such as the behavior of different sub-groups potentially making use of the application under test.  This segregation establishes the data points within the Performance Model.
An “iteration” identifies the specific sequence within a run.
Pilot Study

     F.   Pilot Study: Pilot studies are often necessary in constructivist studies to

          help provide a framework and research questions.  The student should

          describe the pilot study procedures and results, as well as insights from the

          pilot study that will impact on the dissertation research itself.

Data Analysis

     G.   Data Analysis: Data analysis strategies should be described.  If

          triangulation is planned [triangulation, in essence, refers to bringing

          multiple perspectives or approaches to bear on a problem], the student

          should explain the multiple sources of data and the conditions under which

          corroboration of evidence will be sought.  

Longevity/Sustainability
Anomalies, such as occasional spikes in response time, are illustrated in this example graph from a longevity run conducted over 2 days:
[image: image5.png]Average Response Time (seconds)

Average Transaction Response

1200001028 1800001029 0000001070 OSO0001050 12000010530 100001050 0000001051 0S0XD0103!
Elapsed scenario time hh:mm.ss MM/dd




Figure 4 – Spikes in Latency during a long run

This graph of application latency (created by Mercury LoadRunner 7.8) had default Display Options changed to use “Absolute time” (m/d/y) rather than hours/minutes “Relative to scenario start time”.  To obtain the vertical lines rather the default horizontal lines, the granularity XE "granularity"  was changed to “10 seconds” instead of the default 4,096 seconds.
Data Analysis Spreadsheet containing Graphs

Unfortunately, current models of load testing software does not offer much in the way of analyzing differences in results obtained from several runs.

So I have created a spreadsheet to hold raw results of runs, calculate analysis, aggregate the data, and format charts.

The spreadsheet resents calculations and graphs on several dimensions:
· The average of several runs for the same subgroup, performed under identical conditions.  The spreadsheet is set to highlight any deviation among the samples that are higher than an expected amount of deviation.  
· The difference in performance versus results from runs under other environments, stored in another  similarly structured spreadsheet file.

· The difference in performance among subgroups.

The figure below illustrates the flow of data stored among tabs.

Figure 5 - Flow of data within the Data Analysis Spreadsheet

Performance vs. Response Time Relationship Graphs

Unfortunately, current versions of load testing software do not yet offer much in the way of analyzing differences in results obtained from several runs.

When the results from several subgroups are plotted together, trends emerge from the data. In this chart of increasing load along the X axis, note that the number of Transactions Per Second (TPS) rises up the primary Y axis until it hits a plateau until overload conditions occur.  Meanwhile, the line illustrating user response time on the secondary Y axis keeps rising as loads increase.

Figure 6 – Performance vs. Response Time Relationship Graph

Longevity/Sustainability Test Results

Below is a sample graph of latency results from a run where several users start simultaneously
[image: image6.png]Average Response Time (seconds)

Average Transaction Response Time

0015 0030 0045 0100 0115 0130 0145 0200 0215 0230 0245 0300
Elapsed scenario time hh:mm





Figure 7 – Performance vs. Response Time Relationship Graph

Why TPS Increases 


as more transactions are added.
Significance of the Study
Performance Test Reports

This provides management the visibility they want into the performance measurement and improvement process and the results emanating from it.
Limitations of the Method

     H.   Limitations of the Method: Anticipated limitations of the study should be

          explained.  For example, limitations may arise because of the nature of the

          available sample or instruments.  The student should explore the

          limitations and any strategies that will be used to minimize their impact. 

          Implications for conducting and generalizing the study should be

          discussed.

CHAPTER IV.  ASSESSMENT METHODOLOGY
This chapter analyzes the methodology used to obtain from stakeholders their assessment of the artifacts and processes used for performance testing.

Description of the Analytic Techniques

What is this?

Perception and Assessment Instruments


To determine how well stakeholders perceived the artifacts and the testing process, an instrument was needed that is simple and understandable in its use.
Characteristics of the Sample Population
INDIVIDUAL

Time in profession

Certifications

ORGANIZATION

Budgeting

Organizational Placement

Planning

Presentation

Review

Research Questions Answered
Role Ambiguity and Confidentiality

The difference in roles is like the difference between going to a family doctor and going to that place employees go for urine drug tests.

The Performance Engineer can be like one or the other – but never both at the same time.

One feels comfortable discussing issues with his/her family physician only because of a trust of non-disclosure.

LEARNING: Define disclosure policies and procedures with application developer.

Managing Expectations


Manage myths

Put Money Toward More Hardware Instead of Performance Testing


Steve Wilson (2000) explains the paradox of why performance is still an issue when the cost of hardware is decreasing:

“The software being developed for the Java platform today is much more complex than it was just a year or two ago.  Developers are continuing to push the envelope—each time the tool improves, the scope and complexity of the application being built with them increases.” (xvii)


So the conclusion is that the unacknowledged high-order purpose for the existence of a Performance Engineer is to ensure that the organization successfully manages complexity.  Slow performing applications are a manifestation of an organization’s inability to properly manage complexity.  Performance engineers know where to throw more iron because they understand the hardware mix.
You’re “Spinning Your Wheels”
Several days are afforded operations personnel to install applications after being given detailed written instructions.

Yet there seems to be an assumption that Performance Engineer can somehow be able to get everything running instantaneously with no documents to guide them.

The text of a sample discussion is below.

who one can feel comfortable discussing any issues because
Or I can be 

doctor

require formal procedures

assumption of no communiction
Selection of Tools
Approach to Testing

Multiple Simultaneous Contending Projects

Initial Planning

Status Reports

Presentation of Results
CHAPTER V.  DISCUSSION AND RECOMMENDATIONS
Organizational Maturity

The Software Engineering Institute (SEI)  has created Computer Maturity Model (CMM).

Alternately, Six Sigma practitioners have also ???.

Disclosure Policies and Procedures

Considerations for Selection of Tools

Approach to Testing

Juggling: Prioritizing Projects

Initial Planning

Status Reports

Presentation of Results
Project Review and Conclusion
REFERENCES

Comparative Statistics

Wilson, Steve, and Jeff Kesselman. Java Platform Performance : Strategies and Tactics  Palo Alto: Sun Microsystems, 2000.
Action Research

Wilson, Steve, and Jeff Kesselman. Java Platform Performance : Strategies and Tactics  Palo Alto: Sun Microsystems, 2000.
Survey Research

Wilson, Steve, and Jeff Kesselman. Java Platform Performance : Strategies and Tactics  Palo Alto: Sun Microsystems, 2000.
Computer Software Performance Engineering and Capacity Management 

Vendor Specific

Software Engineering Inst. Carnegie Mellon Univ. The Capability Maturity Model: Guidelines for Improving the Software Process Addison-Wesley Professional; 1st edition (June 19, 1995)  ISBN: 0201546647  This is the first book on CMM.
Burwick, Diane M. How to Implement the CMM, 2nd Edition Bps Pub 20 March, 2001  ISBN: 096767347X

Compuware Corporation. "DevPartner (formerly NuMega) " Compuware Sales Compuware Corporation. 10 Sep. 2004. <http://www.compuware.com>.
Duthie, Gary  Solutions for Poor Server Performance  January 20, 1999  Microsoft Corporation  < http://www.microsoft.com/technet/prodtechnol/windows2000serv/technologies/iis/maintain/optimize/sol.mspx >

Evers, Dan Maximizing IIS Performance  Accessed October 30, 2004 Microsoft Corporation  < http://www.microsoft.com/technet/prodtechnol/windows2000serv/technologies/iis/maintain/optimize/perflink.mspx > Lists several articles.
IBM Corporation. "Load Testing with LoadTest" IBM Rational Support 10 Sep. 2004. IBM Corporation. 10 Sep. 2004 <http://www.rational.ibm.com>.
Mercury Interactive Corporation. "Load Testing with LoadRunner" Mercury Support 10 Sep. 2004. Mercury Interactive Corporation. 28 Oct. 1998 <http://www.mercury.com>.
Friedman, Mark, and Odysseas Pentakalos.  Windows 2000 Performance Guide, First Edition. O’Reilly, 2002.

Gardinier, Kenton, and Chris Amaris.  Windows 2000 Performance Tuning & Optimization. Osborne, 2001.

Gunther, Neil J.  The Practical Performance Analyst. Lincoln, NE: Authors Choice Press, 2000.

Huckaby, Tim  Monitoring CPU Performance Counters  July 31, 2001  < http://www.winnetmag.com/Articles/Index.cfm?ArticleID=21990 >
Jain, R. K. The Art of Computer Systems Performance Analysis : Techniques for Experimental Design, Measurement, Simulation, and Modeling  John Wiley, 1991.

Krishnan, Murali R.  Top Ten Killers of Server Performance  Microsoft Corporation
Lilja, David J.  Measuring Computer Performance : A Practitioner's Guide Cambridge University Press, September 2000. 
Maclaine, Ivan “LoadRunner User's Guide” Qualtech International  21 October 2004 Posted Posted on Apr 8, 2003
<http://www.qualtech-int.com.au/filedb/pafiledb.php?action=file&id=%203>
McWhinney, Mark  Critical Success Factors for Load Test Projects  PowerTest Corporation. October, 2004
Menasce, Daniel A., Lawrence W. Dowdy, and Virgilio A.F. Almeida. 
Performance by Design : Computer Capacity Planning By Example. Pearson Education, January 5, 2004. 
Menasce, Daniel A., and Virgilio A.F. Almeida. 
Capacity Planning for Web Services: Metrics, Models, and Methods, 2nd edition Prentice Hall, September 11, 2001.  
Menasce, Daniel A., and Virgilio A.F. Almeida. 
Scaling for E-Business: Technologies, Models, Performance, and Capacity Planning Prentice Hall PTR, May 15, 2000.
Menasce, Daniel A., and Virgilio A.F. Almeida. 
Capacity Planning for Web Performance: Metrics, Models, and Methods 
Prentice Hall, June, 1998.

The Middleware Company  J2EE and .NET (RELOADED) Yet Another Performance Study June 2003 < http://www.middlewareresearch.com/endeavors/artifacts/030730J2EEDOTNET/J2EE%20dotNET%20Performance%20Comparison%20Report%20030730.pdf >
Microsoft Corporation Microsoft Knowledge Base Article "Q229814: Configuring IIS to Handle Heavy Usage”
Leake, Gregory and James Duff (Vertigo Software, Inc.)  Microsoft .NET Pet Shop 3.x: Design Patterns and Architecture of the .NET Pet Shop May 2003 Microsoft Corporation < http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/petshop3x.asp >

Sun Corporation Java 2 Platform Enterprise Edition Blueprints < http://java.sun.com/j2ee/blueprints/index.html >
Mueller, John Paul, and Irfan Chaudhry.  Microsoft Windows 2000 Performance Tuning Technical Reference. Microsoft Press, 2000.

Musumeci, Gian-Paolo D., and Mike Loukides. 
System Performance Tuning, 2nd Edition. O’Reilly, 2002.

Nelson, Randolph.  Probability, stochastic processes, and queueing theory : the mathematics of computer performance modeling New York : Springer-Verlag, 1995.ISBN 0387944524

Newport Group, Making E-Business Work. Newport Group Research, 1999.
Newport Group, Performance Management and Monitoring Dynamics. Newport Group Research, 1999.

Ponnachath, Prashanth  Benchmarking Application Servers  Sybase Corporation < http://www.sybase.com/detail?id=1025472 and http://www.sybase.com/content/1025472/Techline_Dept_4.1.pdf >
Reilly, George V. (of the Microsoft Internet Information Server team) Server Performance and Scalability Killers  Microsoft Corporation. February 22, 1999 < http://msdn.microsoft.com/library/en-us/dniis/html/tencom.asp >
Smith, Connie U. and Lloyd G. Williams. Performance Solutions: A Practical Guide to Creating Responsive, Scalable Software.  Pearson, 2002. (ISBN 0-201-72229-1).

Spencer, Ken  Tweaking NT and IIS for ASP Applications  March, 2000 < http://www.winnetmag.com/Articles/Index.cfm?ArticleID=8069 >
Tracy, Michael, Scott Ware, Robert Barker, and Louis Slothouber Professional Web Site Optimization, Wrox Press. February 1, 1997. ISBN 186100074X 

Veritest.  Comparing Microsoft .NET Pet Shop Performance and Scalability to the Sun Java Pet Store May 2002 Lionbridge Technologies < http://www.gotdotnet.com/team/compare/Benchmark_ToolComparison.aspx >
Wilson, Steve, and Jeff Kesselman. Java Platform Performance : Strategies and Tactics  Palo Alto: Sun Microsystems, 2000.

Functional Software Testing

Dustin, Elfriede. Effective Software Testing: 50 Specific Ways to Improve Your Testing Addison-Wesley Professional; December 18, 2002 ISBN: 0201794292
Dustin, Elfriede. Automated Software Testing: Introduction, Management, and Performance Addison-Wesley Professional; June 28, 1999 ISBN: 0201432870
Kaner, Cem, James Bach, and Bret Pettichord. . Lessons Learned in Software Testing  Wiley; December 15, 2001
Kaner, Cem, Jack Falk, and Hung Q. Nguyen. Testing Computer Software, 2nd Edition Wiley; April 12, 1999
Organizational Maturity and Organizational Performance Improvement 
Wilson, Steve, and Jeff Kesselman. Java Platform Performance : Strategies and Tactics  Palo Alto: Sun Microsystems, 2000.
APPENDICES

This thesis has a set of accompanying files on a CD or at http://www.wilsonmar.com/MSCIT_thesis.
     Appendix A: Consent Form

     Appendix B: Letter of Introduction to Subjects

     Appendix C: Questionnaire

     Appendix D: Interview Data

Appendix A: Job Description - Performance Engineer

Appendix B: LoadRunner

Appendix C: LoadRunner Vu Scripting 

Appendix D: Sample Performance Test Plan 1

Appendix E: Sample Performance Test Report 1

INDEX



Benchmarks, 41

Concentration Factor, 39

Contention Testing, 27

Fail-Over Testing, 30

Horizontal scaling, 29

Java Virtual Machines, 11

Latency, 38

Little’s Law, 40

Load Simulators, 41

Longevity Testing, 29

Monitors, 41

Overhead from tools, 41

Overload Testing, 27

performance enginner, viii

Profilers, 41

Response Time, 38

Scaling out, 29

Scaling up, 29

Speed Testing, 26

Throughput, 38

Vertical scaling, 29




RESUME






� Based on the MLA Style Manual and Guide to Scholarly Publishing, 2nd edition 


by Joseph Gibaldi (Modern Language Association: 1998, ISBN: 0-87352-977-4) <� HYPERLINK "http://www.mla.org/" ��http://www.mla.org/style�>





6
9

